Kaftory, M. \& Rubin, M. B. (1983). J. Chem. Soc. Perkin Trans. pp. 149-154.
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.

Martinez-Ripoll, M. \& Cano, F. H. (1975). PESOS. Instituto Rocasolano, CSIC, 28006-Madrid, Spain. Nardelli, M. (1983). Comput. Chem. 7, 95-98.
Stewart, J. M., Machin, P. A., Dickinson, C. W., Ammon, H. L., Heck, H. \& Flack, H. (1976). The XRA Y76 system. Tech. Rep. TR-446. Computer Science Center, Univ. of Maryland, College Park, Maryland, USA.

Acta Cryst. (1988). C44, 946-947

# (5Z,14Z)-1,10-Dioxa-4,7,13,15-tetrathiaoctadeca-5,14-diene 

By John C. Barnes* and John D. Paton<br>Chemistry Department, The University, Dundee DD $14 H N$, Scotland

C. Keith Prout and James C. G. Turner

Chemical Crystallography Laboratory, Parks Road, Oxford, England

and W. Schroth<br>Chemistry Department, Martin Luther Universität, Halle, 4020 German Democratic Republic

(Received 19 October 1987; accepted 18 January 1988)
Abstract. $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{~S}_{4}, M_{r}=324.52$, monoclinic, $P 2_{1} / a$, $a=9.106$ (2), $\quad b=10.033$ (1), $\quad c=17.307$ (3) $\AA$, $\beta=97.51(2)^{\circ}, \quad V=1567.6 \AA^{3}, \quad Z=4, \quad D_{x}=$ $1.38 \mathrm{Mg} \mathrm{m}^{-3}, \lambda(\mathrm{CuK} \alpha)=1.5418 \AA, \quad \mu=53.2 \mathrm{~cm}^{-1}$, $F(000)=688, T=293 \mathrm{~K}, R=0.034$ for 2460 reflexions $\left(F_{o}>2 \sigma_{F}\right)$. The conformation at each $\mathrm{C}-\mathrm{S}-$ $\mathrm{C}=\mathrm{C}$ group is anti whereas each $\mathrm{C}-\mathrm{S}-\mathrm{C}-\mathrm{C}$ group is gauche. Each of the $\mathrm{O}-\mathrm{C}-\mathrm{C}-\mathrm{S}$ groups is gauche. There is not even approximate symmetry within the molecule in any direction. The angle between the normals to the $\mathrm{S}-\mathrm{C}=\mathrm{C}-\mathrm{S}$ mean planes is 81.4 (2) ${ }^{\circ}$.

Experimental. The preparation and characterization of the title compound (I) will be reported separately. After preliminary photographs, unit-cell dimensions were refined from 25 accurately centred reflections with $\theta \simeq 30^{\circ}$ using an Enraf-Nonius CAD-4F diffractometer.

(I)

[^0]0108-2701/88/050946-02\$03.00

Data were collected on one quadrant of a colourless crystal $0.3 \times 0.5 \times 0.1 \mathrm{~mm}$ for $\theta \leq 75^{\circ} .4492$ measured reflexions gave 3212 unique reflexions ( $R_{\text {int }}$ 0.051 ) of which 2460 with $F>2 \sigma(F)$ were used in the refinement. Ranges of indices $-11 \leq h \leq 11,0 \leq k \leq$ $12,0 \leq l \leq 21$. The intensities of two standard reflexions were checked every hour and the orientation of the crystal was verified every 200 reflexions. Data were corrected for the Lorentz and polarization terms and for absorption using a $\psi$-scan routine. Correction factors ranged from 1.00 to 1.48.

The structure was solved using MULTAN (Main, Fiske, Hull, Lessinger, Germain, Declercq \& Woolfson, 1980). Refinement was carried out using SHELX 76 (Sheldrick, 1976), XANADU (Roberts \& Sheldrick, 1975) and PLUTO (Motherwell \& Clegg, 1978). Atomic scattering factors from SHELX76. In the final refinement in two blocks all non-hydrogen atoms had


Fig. 1. Stereoview of the title compound normal to the plane S1, S3, S 4 , showing atomic numbering.
(c) 1988 International Union of Crystallography

Table 1. Coordinates $\left(\times 10^{5}\right)$ for non-hydrogen atoms with e.s.d.'s in parentheses

| $U_{\text {cq }}=\frac{1}{3} \sum_{i} \Sigma_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $x$ | $y$ | $z$ | $U_{\text {eq }}\left(\AA^{2} \times 10^{3}\right)$ |
| SI | 15917 (6) | 39157 (5) | 59200 (3) | 46 (1) |
| S2 | 16401 (6) | 15594 (5) | 72629 (3) | 49 (1) |
| S3 | 29144 (11) | 55482 (7) | 92690 (4) | 78 (1) |
| S4 | 44491 (7) | 70552 (6) | 79310 (3) | 58 (1) |
| 01 | 29046 (18) | 21700 (17) | 90151 (9) | 55 (1) |
| O 2 | 31311 (16) | 68217 (14) | 60266 (9) | 48 (1) |
| Cl | 29947 (24) | 27430 (22) | 61307 (13) | 49 (1) |
| C2 | 30277 (25) | 18124 (21) | 66782 (13) | 49 (1) |
| C3 | 25837 (30) | 5341 (21) | 80252 (14) | 56 (1) |
| C4 | 36887 (28) | 12583 (24) | 86036 (15) | 58 (1) |
| C5 | 38539 (28) | 29225 (26) | 95805 (13) | 59 (1) |
| C6 | 29682 (32) | 40521 (31) | 98489 (14) | 69 (1) |
| C7 | 28125 (28) | 49542 (24) | 83134 (14) | 57 (1) |
| C8 | 34239 (27) | 55830 (21) | 77694 (12) | 52 (1) |
| C9 | 52689 (25) | 71971 (25) | 70404 (16) | 58 (1) |
| C10 | 42668 (27) | 77239 (22) | 63421 (15) | 55 (1) |
| C11 | 36588 (24) | 58178 (22) | 55622 (13) | 48 (1) |
| C12 | 23872 (25) | 49435 (23) | 52241 (12) | 49 (1) |

Table 2. Interatomic distances $(\AA)$ and angles $\left({ }^{\circ}\right)$

| C1-S1 | $1.740(2)$ | C12-S1-C1 | $100.3(1)$ |
| :--- | :--- | :--- | :--- |
| C12-S1 | $1.807(2)$ | C3-S2-C2 | $101.3(1)$ |
| C2-S2 | $1.738(2)$ | C7-S3-C6 | $103.7(1)$ |
| C3-S2 | $1.800(2)$ | C9-S4-C8 | $101.6(1)$ |
| C6-S3 | $1.803(3)$ | C5-O1-C4 | $112.8(2)$ |
| C7-S3 | $1.749(2)$ | C11-O2-C10 | $112.7(2)$ |
| C8-S4 | $1.750(2)$ | C2-C1-S1 | $124.9(2)$ |
| C9-S4 | $1.804(3)$ | C1-C2-S2 | $124.6(2)$ |
| C4-O1 | $1.410(3)$ | C4-C3-S2 | $115.1(2)$ |
| C5-O1 | $1.433(3)$ | C3-C4-O1 | $108.0(2)$ |
| C10-O2 | $1.428(3)$ | C6-C5-O1 | $108.0(2)$ |
| C11-O2 | $1.411(3)$ | C5-C6-S3 | $115.7(2)$ |
| C2-C1 | $1.328(3)$ | C8-C7-S3 | $122.6(2)$ |
| C4-C3 | $1.510(3)$ | C7-C8-S4 | $123.9(2)$ |
| C6-C5 | $1.499(4)$ | C10-C9-S4 | $115.9(2)$ |
| C8-C7 | $1.16(3)$ | C9-C10-O2 | $114.5(2)$ |
| C10-C9 | $1.511(3)$ | C12-C11-O2 | $109.6(2)$ |
| C12-C11 | $1.509(3)$ | C11-C12-S1 | $115.3(1)$ |
|  |  |  |  |

Table 3. Torsion angles $\left({ }^{\circ}\right)$

| C12-S1-C1-C2 | $173 \cdot 18$ | C4-O1-C5-C6 | 167.42 |
| :---: | :---: | :---: | :---: |
| C1-S1-C12-C11 | $-72.36$ | C11-O2-C10-C9 | -78.33 |
| C3-S2-C2-C1 | -164.41 | C10-O2-C11-Cl2 | -177.63 |
| C2-S2-C3-C4 | 74.33 | S1-C1-C2-S2 | $2 \cdot 34$ |
| C7-S3-C6-C5 | $38 \cdot 10$ | S2-C3-C4-O1 | 65.54 |
| C6-S3-C7-C8 | -147.01 | O1-C5-C6-S3 | -86.96 |
| C9-S4-C8-C7 | 168.78 | S3-C7-C8-S4 | 1.72 |
| C8-S4-C9-C10 | 78.58 | S4-C9-C10-O2 | -71.13 |
| C5-O1-C4-C3 | $180 \cdot 00$ | O2-C11-C12-S | -68.57 |

anisotropic temperature parameters, H atoms located on difference syntheses were refined with isotropic temperature parameters. A correction for secondary extinction ( $S H E L X 76$ ) was applied. There is no evidence of disorder or high thermal motion. Final refinement (minimizing $\sum w\left|F_{o}-\left|F_{c}\right|^{2}\right.$ ) 246 refined parameters, $R=0.034, \quad w R=0.062, \quad w=0.0025 /$ $\left[\sigma^{2}(F)+0.427544 F^{2}\right]$, mean shift/e.s.d. $=0.185$, max. shift/e.s.d. $=0.496$, max. diff. peak $=0.284$, max. negative peak $=-0.361 \mathrm{e}^{-3} \AA^{-3}$.

Final atomic coordinates are given in Table 1, with bond lengths and angles in Table 2 and torsion angles in Table 3.* The molecule is shown in Fig. 1.

Related literature. The S atoms in crown thioethers may all point out of the crown ring as in tetrathia-12-crown-4 (Dalley, Larson, Smith, Matheson, Izatt \& Christensen, 1981) or some inwards and others outwards as in hexathia-18-crown-6 (Hartman, Wolf, Foxman \& Cooper, 1983) but in each of these saturated rings all $\mathrm{C}-\mathrm{S}-\mathrm{C}-\mathrm{C}$ groups have gauche conformations. In the present molecule the additional constraints imposed by the $\mathrm{C}=\mathrm{C}$ units result in anti conformations at $\mathrm{C}-\mathrm{S}-\mathrm{C}=\mathrm{C}$.

[^1]
[^0]:    * To whom correspondence should be addressed.

[^1]:    * Lists of structure factors, anisotropic thermal parameters and H -atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 44695 ( 16 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.


    ## References

    Dalley, N. K., larson, S. B., Smith, J. S., Matheson, K. L., Izatt, R. M. \& Christensen, J. J. (1981). J. Heterocycl. Chem. 18, 463-467.
    hartman, Ja. R., Wolf, R. E., Foxman, B. M. \& Cooper, S. R. (1983). J. Am. Chem. Soc. 105, 131-132.

    Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from $X$-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
    Motherwell, W. D. S. \& Clegg, W. (1978). Pluto. Program for plotting molecular and crystal structures. Univ. of Cambridge, England.
    Roberts, P. \& Sheldrick, G. M. (1975). XANADU. Program for molecular geometry calculations. Univ. of Cambridge, England.
    Sheldrick, G. M. (1976). SHELX76. Program for structure determination. Univ. of Cambridge, England.

